
MotionFlow: Time-axis-based Multiple Robots Expressive Motion

Programming

Qiuyu Lu

 Tsinghua University

 Beijing, China

 lqy17@mails.tsinghua.edu.cn

Yejun Liu

 Tsinghua University

 Beijing, China

 yjl14@mails.tsinghua.edu.cn

Haipeng Mi
 Tsinghua University

 Beijing, China

 haipeng.mi@acm.org

ABSTRACT

Robots have been gradually weaving into the fabric of many

areas, including children’s education and new media arts. Such

combination promotes children’s creativity and provides new

artistic expression paradigms for artists. However, for robot

systems that contain many degrees of freedom, the motion

programming can be very complicated.

This paper presents a time-axis-based computer aided design tool

for multiple robots expressive motion programming, MotionFlow.

It allows users who have no prior coding experience to easily add

and edit motion clips modules on the time axis. In the meanwhile,

it provides a rendered animation preview of the robots’ motions,

which enables users to evaluate the programming result without

repeatedly testing the program on the hardware. In this way, users

can perform rapid optimization and adjustment of the motion

design. According to the user study, MotionFlow is very easy to

use and very efficient for motion editing. It can greatly lower the

threshold of multiple robots motion programming and allows

users to focus more on creative work.

CCS CONCEPTS

• Human-centered computing~Human computer interaction

(HCI)~Interactive systems and tools • Social and professional

topics~Professional topics~Computing education~K-12 education

KEYWORDS

human-computer interaction, computer aided design, robot

programming; education; robotic art

ACM Reference format:

Qiuyu Lu, Yejun Liu and Haipeng Mi. 2020. MotionFlow: Time-axis-

based Multiple Robots Expressive Motion Programming. In Proceedings

of 2020 3rd International Conference on Computer Science and Software

Engineering (CSSE’ 20). Beijing, China, 5 pages.

https://doi.org/10.1145/3403746.3403919

1 Introduction

With the development of technology and the intersection of

disciplines, robots are gradually weaving into the fabric of

people's daily lives. In terms of education, many schools have

provided robot-related courses for adolescents and even children.

Many of these courses (e.g., animatronics show class) require

knowledge and skills in multiple fields, including screenwriting,

stage art, voice performance, mechanical design, electronic

engineering, etc. Such courses blur traditional lines between art

and engineering, demonstrate the universality of creativity across

disciplines, and can inspire students to see new career possibilities

[1-3]. Also, more and more artists are trying to combine robots

with art, such as robotic painting, sculpture, and orchestra

performance [4-6]. Artists are translating the robotics technologies

into artistic language.

In the above examples, the programming of various expressive

actions of the robot is essential. However, as the robot's degree of

freedom increases, robot motion programming will become very

complicated. Further, if multiple robots are moving

simultaneously, the relative positions and interactions of the

robots will make motion programming even more difficult. Non-

professionals often struggle with this kind of programming.

To deal with this problem, when designing children's robot

education products, there is often a compromise between the

number of robot's degrees of freedom and the difficulty of

programming. For example, strictly limiting the number of

degrees of freedom, minimizing the number of robots, and

reducing the interaction between/among robots. Correspondingly,

the programming tools are usually based on graphical

programming, where users can program the motions by

connecting pre-set graphical instruction modules without learning

to code [7-9]. However, such programming method is inefficient

when it comes to editing a large number of motions, and it cannot

directly reflect the time and space relationship between different

robot motions.

In addition, work like Topobo [10] and NAO [11] further

simplified the programming of robot motions by allowing users to

program via directly manipulating the corresponding 3D model

virtually or the robot itself physically. Although such

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

CSSE 2020, May 22–24, 2020, Beijing, China

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7552-8/20/05…$15.00

https://doi.org/10.1145/3403746.3403919

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3403746.3403919&domain=pdf&date_stamp=2020-06-26

CSSE’20, May, 2020, Beijing, China Q. Lu et al

programming methods are straightforward, and can better support

robot systems with lots of degrees of freedom; the programmed

motions are like being uploaded into a black box, which means it

Figure 1: Beyond programming motion codes, toward editing

motion clips

is difficult for users to modify them. Such method is more suitable

for relatively short, random motion programming.

Unlike education-oriented robot(s), artists usually have to use a

robot with a lot of degrees of freedom for artwork, or even many

such robots to cooperate and achieve the desired artistic effect

when creating robot performances. Therefore, artists generally

need to cooperate with professionals to complete motion editing

through code programming.

Essentially, robot motion programming is to control each servo

to start moving at a certain time point and move to a certain angle

over a certain period. Although such codes can be complicated

(Figure 1a), if the codes for different servos are arranged along a

time axis, the sequential relationship can be clear at a glance

(Figure 1b). Further, by packaging these codes into instruction

modules (clips), the user can set the servo by simply changing the

values of the angle and the duration of the rotation, making the

motion programming very simple and easy (Figure 1c). Based on

this concept, we propose a multi-robot expressive motion

programming tool based on the time axis. Users can directly drag

the motion clip to the time axis and can adjust its duration and

insertion point freely to program robot's motions quickly. At the

same time, the tool can simulate and provide a preview of the

programmed motions, allowing users to evaluate the programming

result and make rapid optimization without running the hardware.

Our work mainly provides the following contributions: 1). The

concept of time-axis-based robot motion programming. 2). The

development of an example design tool based on this concept. 3).

User studies to evaluate such a design tool.

2 Example of A Multi-robot System

ZOOO is a multi-robot stage, and its overall system framework is

shown in Figure 2a. Similar to many other multi-robot systems,

users can program motions on the computer and upload the

program to the main control board (e.g., an Arduino board). All

the servos and speakers are controlled by the main control board

and, if necessary, the drive board(s).

As shown in Figure 2b, ZOOO's mechanical hardware includes

three branches (small robots), each branch contains 5 degrees of

freedom (mouth opening and closing, head tilt, left and right arm

rotation, body rotation), and a speaker. Besides, each branch is

eccentrically attached to a small rotatable round panel. The large

stage base is also rotatable. By combining rotation of the branches,

Figure 2: An example of multi-robot system – ZOOO

panels, and base, various forms of interaction among the robots

can be realized. For this system, the large number of degrees of

freedom and the various positional relationships among robots

make programming motion for it very complicated.

Taking this multi-robot system as an example, the design,

development, and evaluation of a time-axis-based multi-robot

programming tool MotionFlow (Figure 2c) will be discussed

below.

3 Time-axis-based Robot Motion Programming

MotionFlow is developed with web languages such as HTML5

and JavaScript. MotionFlow runs on the computer and

communicates with the Arduino board through the serial port to

control the robot system's hardware.

MotionFlow takes the advantages of HTML5 front-end

development to build the graphical user interface. At the same

time, it uses JavaScript's flexible event response capabilities to

enable users to edit motions quickly and efficiently on the time

axis. In addition, the preview function is implemented by WebGL

(three.js), the audio insertion function is achieved via the Audio

API, and the local operation of MotionFlow is enabled through a

web runtime environment node-webkit which is based on

Chromium and Node.js.

The core design concept of MotionFlow is to transform code-

based robot motion programming into time-axis-based robot

MotionFlow: Time-axis-based Multiple Robots Expressive Motion

Programming
CSSE’20, May, 2020, Beijing, China

motion graphical programming so that users can quickly and

easily implement robotic "choreographies".

When designing MotionFlow, we first ensure that the users can

Figure 3: The overall interface of MotionFlow

Figure 4: Editing motion and audio clips on the time axis

quickly and accurately program repetitively editable robot motion

clips. And then, we make sure that the clips can be edited freely

on the time axis. Lastly, we ensure that users can preview, save,

upload the programming result at any time. Based on these basic

principles, we divide the interface of MotionFlow into four

functional areas: clip editing area, clip selecting/inserting area,

motion preview area, and other functions area (Figure 3).

3.1 Edit Motion Clip on Time Axis

The clip-editing area is the core function area of MotionFlow

(Figure 4). Users can quickly program the robots by adding or

editing motion clips or audio clips to the time axis. The time axis

contains multiple timelines, each timeline corresponds to a degree

of freedom (one servo) or a audio track (one speaker). All timeline

run in parallel and do not interfere with each other. In order to

facilitate the user to distinguish between different timelines, the

timelines are grouped based on their ownership (branch A/B/C or

base), and named according to the corresponding "body" parts

(mouth, head, arms, etc.). Users can add motion clips or audio

clips to each timeline through the clip-selecting and inserting tool

(described in detail in the next section), or by directly copying and

pasting existing motion clips or audio clips on the timeline. Each

motion clip contains two parameters: the absolute rotation angle

and the rotation duration of the servo. The user can drag the ends

of the clip to change the duration of motion clip or trim the audio

clip, or drag the entire clip to change its position on timeline. The

absolute rotation angle and duration can also be modified by

typing in desired value. The clips do not have to be connected end

to end. The user can customize the time interval between the clips.

The clip editing area also contains a vertical marker line. The

marker line mainly provides two functions: 1. Indicating the

progress when preview or actual run the robots; 2. Indicating

where the clip will be inserted when adding a clip.

3.2 Select and Insert Various Clips

The clip selecting/inserting area provides three different

functional tabs for robot programming. (Figure 5).

The motion clip tab (Figure 5.a) allows users to select and

insert various motion clips. Since the moving range of each part of

the robot is different, the maximum rotating angles of each part

are limited in advance. Among them, the mouth part only provides

two stages of motion, opening and closing. After the angle is

determined, users can click the plus sign to add the motion clip to

the corresponding timeline.

The audio clip tab (Figure 5.b) provides audio clips insertion

function. After importing the audio into the program, the user can

then insert the audio into the selected timeline. On the Import tab

 Figure 5: Tabs for selecting and inserting clips

CSSE’20, May, 2020, Beijing, China Q. Lu et al

Figure 6: The simulation and preview area

Figure 7: Interface for other functions

(Figure 5.c), users can import the previously saved programming

file.Some preset motion combinations (e.g., repeated opening and

closing mouth) are also provided here.

3.3 Robot Motion Preview

The preview area simulates and renders the motion programming

results in the form of animation, including the top view/front view

of the whole robot system and a preview of a single robot (Figure

6). The preview allows users to quickly check the programming

result without actually uploading the program and running the

hardware. Therefore, MotionFlow can simplify the iterative

modification process of motion programming, providing users a

smooth programming experience. The top view window and the

front view window abstractly present the orientation of the robots

and their spatial position relationship with each other. The single

robot preview provides a detailed preview of the specific motion

of the selected robot.

3.4 Other Functions

The other functions area provides controls for connecting the

hardware, running/pausing/stopping the hardware/preview, saving

the program, and clearing the time axis (Figure 7). The running

hardware function is only available after connecting the computer

with the robot system. After the user clicks to run the hardware,

MotionFlow will compile the user's programming and upload it to

Arduino. Then, the hardware will run. The preview is always

available, even when the computer is not connected to the

hardware. The user can preview the programming result at any

time. In addition, the user can drag the vertical marker line to

select the starting time point of preview.

4 User Study

We conducted a user study on MotionFlow to evaluate how such a

time-axis-based motion editing tool could potentially ease multi-

robot system programming. Three paid participants were recruited

for this study. Two of them were fifth-graders (User A and User

B), and the remaining one is 31 years old artists. Except that user

B has certain robot programming experience using Arduino,

neither participant A nor C has any relevant experience.

Before beginning the study, we introduced the ZOOO hardware

system to all the participants. Then, the study was carried out with

only one user at a time. In the first half of the study, we used 10

minutes to introduce MotionFlow and trained the participant to

use it. Then, we asked the participant to use MotionFlow to

program a dance show within 15 minutes. In the second half of

the study, we first taught Arduino's programming knowledge

related to servos and speakers in 10 minutes. And then asked the

participant to code to make a dance show in 15 minutes. Moreover,

the participant was told that they were free to make a new dance

show or try to reproduce the dance show he/she created with

MotionFlow before. In order to avoid the time-wasting caused by

recording audio, we provided some sound effects materials in

advance for the participants and told them that they did not have

to record audio by themselves. The result is shown in Table 1.

In the first half of the study, participant A programmed a dance

with some random motions. Two robots were involved. There

were 62 motion clips in total, and 1 audio clip was used as

background music. Participant B programmed an "ice dance"

show, which involved all three robots and used a total of 135

motion clips and 1 audio clip as background music. About half of

the action clips were programmed to control the rotation of the

panels to simulate skating. Participant C programmed a

mechanical dance show, which involved all three robots, 217

motion clips, and 13 audio clips. Among the audio clips, 1 was

background music, 12 were short sound effects that match the

motion. Besides, participant C also tried to put different robots

under the "spotlight" (frontmost) through the rotation of the base.

Table 1: User Study Result

 User Clip Type
Number of Clips

MotionFlow Coding

A
Motion 62 7

Audio 1 0

B
Motion 135 42

Audio 1 1

C
Motion 217 27

Audio 12 2

 Average Motion + Audio 143 25

MotionFlow: Time-axis-based Multiple Robots Expressive Motion

Programming
CSSE’20, May, 2020, Beijing, China

Both participant B and participant C used copying and pasting to

create motions quickly. They also fine-tuned pasted motion clips

to avoid repetition.

In the second half of the study, participant A programmed a

dance with 7 motion clips. Only one robot was involved, and no

audio clip was used. Participant B programmed a dance with 42

motion clips and successfully inserted 1 audio clip as background

music. Two robots were involved. Participant C programmed a

dance with 27 motion clips, successfully inserted 1 background

audio clip, and 1 sound effect audio clip. All three robots were

involved.

In the following user interviews, all participants stated that

"programming on the time axis is very intuitive and easy; the

preview function is very convenient, reducing the time for

repeated modification; inserting audio in MotionFlow is much

easier than in Arduino..." In addition, participant C said that

"MotionFlow has some similarities with non-linear video editing

software. I have lots of experience in video editing. MotionFlow

is very easy to get started for me". Participant B, who had coding

experience with Arduino, considered "when there are many servos,

the code will get complicated. It becomes difficult to distinguish

which piece of the code is controlling which servo, and it is even

more difficult to figure out the sequence of them. Even though I

want to improve the programming efficiency by copying the code,

I often do not know where to paste the code. However, all these

operations are very clear on the time axis in MotionFlow". Also,

we found that because participants A and C were not familiar with

coding, they often encountered compilation failures after trying to

change the code, resulting in a lot of time wasted. Moreover,

when using code to program, the participants often complained

that the motion started time did not match their expectations, and

the short sound effect appeared at the wrong time.

The user study results show that, regardless of whether the user

has programming experience or not, time-axis-based multi-robot

motion programming tools are more straightforward and easier to

use than coding, allowing users to focus more on creative work.

4 Discussion & Future Work

While there are many exciting potentials, there are also limitations

and space for improvement. For example, the current software

mainly focuses on achieving single-line motion performance and

does not allow the robots to interact with the surroundings and the

audiences. In future research, we would like to try to add support

for sensors to increase the interactivity and flexibility of motion

editing. Adding such interaction means that the robot's

performance will no longer be a single storyline. To deal with this

problem, we can introduce multiple secondary time axes and the

concept of interruption. When the robot system detects any input

signals, it can pause the motions on the current time axis and

switch to the corresponding secondary time axis. In addition,

limited by the platform rendering capabilities, the preview is

currently split into three views and contains a detailed rendering

of only one robot. Later we will try a new development

framework to enable detailed preview rendering of the entire

robot system. Lastly, we believe that users can be more

imaginative and creative in their work by freeing them from labor-

intensive parts like coding. In the future, we will conduct more

user study, such as evaluating whether software tools like

MotionFlow can enhance children's creativity in animatronics

courses.

5 Conclusion

This paper presents the time-axis-based graphical programming

concept for multi-robot expressive motion editing, and introduces

a programming tool MotionFlow based on a specific example.

User study show that the tool developed based on this concept can

greatly reduce the threshold and improve the effectiveness for

multi-robot action programming.

ACKNOWLEDGMENTS

We would like to thank Chengpeng Mao and Qiuheqi Zhong for

the brainstorming, the hardware prototyping, and the software

developing.

REFERENCES
[1] Jennifer Ginger Alford, Lucas Jacob, Paul Dietz. (2013). Animatronics

Workshop: A Theater + Engineering Collaboration at a High School. IEEE

Computer Graphics & Applications, 33(6):9-13.

[2] Mose Sakashita, Tatsuya Minagawa, Amy Koike, Ippei Suzuki, Keisuke

Kawahara, and Yoichi Ochiai. 2017. You as a Puppet: Evaluation of

Telepresence User Interface for Puppetry. In Proceedings of the 30th Annual

ACM Symposium on User Interface Software and Technology (UIST ’17).

ACM, New York, NY, USA, 217–228. DOI:

https://doi.org/10.1145/3126594.3126608

[3] Will Bosley, Dave Culyba, Brenda Harger, Sabrina Haskell, Andy Hosmer, TJ

Jackson, Seema Patel, Christine Skarulis, Peter Stepniewicz, Jim Valenti, Salim

Zayat, Eugenia Leu, and Jichen Zhu. 2005. Interbots initiative: an extensible

platform for interactive social experiences with an animatronic character. In

ACM SIGGRAPH 2005 Emerging technologies (SIGGRAPH ’05). ACM, New

York, NY, USA, 9–es. DOI: https://doi.org/10.1145/1187297.1187307

[4] Eduardo Kac. (1997). Foundation and development of robotic art. Journal of

Art Journal, 56(3):60-67.

[5] Meng Liu, Yanlin Liu. (2003). Research on the Application of Robot to Carving

Making. Journal of Machine Tool & Hydraulics, 05:110-112.

[6] Jiayin Li, Tianjian Hu, Shenghua Zhang, and Haipeng Mi. 2019. Designing a

musical robot for Chinese bamboo flute performance. In Proceedings of the

Seventh International Symposium of Chinese CHI (Chinese CHI ’19). ACM,

New York, NY, USA, 117–120. DOI: https://doi.org/10.1145/3332169.3332264

[7] Jiasi Gao. 2018. Research on Design of Tangible Programming Toolkit for

Children. Ph.D. Dissertation. Tsinghua University, Beijing.

[8] Eva-Sophie Katterfeldt, David Cuartielles, Daniel Spikol, and Nils Ehrenberg.

2016. Talkoo: A new paradigm for physical computing at school. In

Proceedings of the The 15th International Conference on Interaction Design

and Children (IDC ’16). ACM, New York, NY, USA, 512–517. DOI:

https://doi.org/10.1145/2930674.2935990

[9] Ayah Bdeir and Ted Ullrich. 2010. Electronics as material: littleBits. In

Proceedings of the fifth international conference on Tangible, embedded, and

embodied interaction (TEI ’11). ACM, New York, NY, USA, 341–344. DOI:

https://doi.org/10.1145/1935701.1935781

 [10] Hayes Solos Raffle, Amanda J. Parkes, and Hiroshi Ishii. 2004. Topobo: a

constructive assembly system with kinetic memory. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI ’04).

ACM, New York, NY, USA, 647–654. DOI:

https://doi.org/10.1145/985692.985774

[11] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier. 2009. Choregraphe: a

graphical tool for humanoid robot programming. In Proceedings of RO-MAN

2009 - The 18th IEEE International Symposium on Robot and Human

Interactive Communication. IEEE, New York, NY, USA, 46-51. DOI:

http://dx.doi.org/10.1109/roman.2009.5326209

